Пример расчета диаметра газопровода высокого давления

Сантехника, казалось бы, не даёт особого повода вникать в дебри технологий, механизмов, заниматься скрупулёзными расчётами для выстраивания сложнейших схем. Но такое видение – это поверхностный взгляд на сантехнику. Реальная сантехническая сфера ничуть не уступает по сложности процессов и, также как многие другие отрасли, требует профессионального подхода. В свою очередь профессионализм – это солидный багаж знаний, на которых основывается сантехника. Окунёмся же (пусть не слишком глубоко) в сантехнический учебный поток, дабы приблизиться на шаг к профессиональному статусу сантехника.

Гидравлический расчет сложного газопровода

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
ФГБОУ ВПО «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Авиационный факультет

Кафедра «НГОТ»

Специальность 130501 «Проектирование, сооружение и эксплуатация газонефтепроводов и газонефтехранилищ»

КУРСОВАЯ РАБОТА

по дисциплине «Основы теории и проектирования энергетических систем газонефтепроводов и газонефтехранилищ»

Тема «Гидравлический расчет сложного газопровода»

Выполнил студент гр. НГД-091 А.С. Соколов

Руководитель А.И. Житенёв

Воронеж 2013

ЗАДАНИЕ

на курсовую работу по дисциплине «Основы теории и проектирования энергетических систем газонефтепроводов и газонефтехранилищ»

Тема проекта «Гидравлический расчет сложного газопровода»

Студент группы НГД-091 Соколов Алексей Сергеевич

Задание №1

. В соответствии с вариантом задания (Приложение А) составить аналитическую зависимость для эквивалентного газопровода, представить вывод этой зависимости с промежуточными результатами и подробными комментариями.

. Вычислить пропускную способность сложного газопровода.

. Рассчитать давления во всех промежуточных точках и построить зависимости давления от продольной координаты газопровода по каждой нитке.

Задание №2

1. В соответствии с вариантом задания рассчитать диаметры трубопроводной системы для обеспечения нормативных значений потерь давления.

. Определить начальное давление, необходимое для снабжения газом всех потребителей в соответствии с исходными данными (Приложение Б).

. Рассчитать давление во всех промежуточных точках и построить зависимости давления от продольной координаты газопровода по каждой нитке.

Руководитель А.И. Житенёв

Задание принял студент А.С. Соколов

Введение

. Гидравлический расчет сложного газопровода высокого давления

.1 Определение пропускной способности сложного газопровода

.2 Оценка полученного расхода в системе

.3 Построение зависимости давления в эквивалентном газопроводе от продольной координаты

.4 Распределение давления по участкам трубопроводной системы

. Гидравлический расчет сложного газопровода низкого давления

.1 Определение давления в узловых точках сети

.2 Определение диаметра участков распределительной сети

.3 Приведение диаметров участков сети к стандартным значениям

.4 Определение зависимости давления в сети от продольной координаты

Заключение

Список литературы

Приложения

Расчет расхода на ограниченном участке

Если газопровод состоит из отдельных участков, то расчет суммарного расхода на каждом из них придется выполнять отдельно. Но это несложно, так как для вычислений потребуются уже известные цифры.

Определение данных с помощью программы

Зная изначальные показатели, имея доступ к таблице одновременности и к техническим паспортам плит и котлов, можно приступать к расчету.

Для этого выполняются следующие действия (пример приведен для внутридомового газопровода именно низкого давления):

  1. Количество котлов умножается на производительность каждого из них.
  2. Полученное значение умножается на уточненный с помощью специальной таблицы коэффициент одновременности для этого вида потребителей.
  3. Количество плит, предназначенных для приготовления пищи, умножается на производительность каждой из них.
  4. Полученное после предыдущей операции значение умножается на коэффициент одновременности, взятый из специальной таблицы.
  5. Полученные суммы для котлов и плит суммируются.

Подобные манипуляции проводятся для всех участков газопровода. Полученные данные вводятся в соответствующие графы программы, с помощью которой выполняются исчисления. Все остальное электроника делает сама.

Расчет с использованием формул

Этот вид гидравлического расчета схож с описанным выше, то есть потребуются те же данные, но процедура будет длительной. Так как все придется выполнять вручную, кроме того, проектировщику понадобится осуществить ряд промежуточных операций, чтобы использовать полученные значения для окончательного подсчета.

А также придется уделить достаточно много времени, чтобы разобраться во многих понятиях, вопросах, которые человек не встречает при использовании специальной программы. В справедливости вышеизложенного можно убедиться, ознакомившись с формулами, которые предстоит использовать.


Расчет с помощью формул сложный, поэтому доступный не всем. На картинке изображены формулы для расчета падения давления в сети высокого, среднего и низкого давления и коэффициент гидравлического трения

В применении формул, как и в случае с гидравлическим расчетом с использованием специальной программы, есть особенности для газопроводов низкого, среднего и, конечно же, высокого давления. И об этом стоит помнить, так как ошибка чревата, причем всегда, внушительными финансовыми издержками.

Вычисления с помощью номограмм

Какая-либо специальная номограмма представляет собой таблицу, где указаны ряд значений, изучив которые можно получить нужные показатели, не выполняя вычислений. В случае с гидравлическим расчетом — диаметр трубы и толщину ее стенок.


Номограммы для расчета являются простым способом получения нужных сведений. Достаточно обратиться к строкам, отвечающим заданным характеристикам сети

Существуют отдельные номограммы для полиэтиленовых и стальных изделий. При расчете их использовались стандартные данные, к примеру, шероховатость внутренних стенок. Поэтому за правильность информации можно не переживать.

Сила тяжести

Гравитация — одна из четырех сил природы. Мощь гравитационной силы между двумя объектами зависит от массы этих объектов. Чем массивнее объекты, тем сильнее гравитационное притяжение.

Когда выливается вода из контейнера, гравитация Земли притягивает воду к земной поверхности. Можно наблюдать тот же самый эффект, если на разных высотах разместить два ведра воды и соединить их трубкой.

Достаточно задать ход жидкости в трубке из одного ведра в другой, после чего сработает сила гравитации, и процесс перелива продолжится самопроизвольно. Гравитация, приложенные силы и атмосферное давление являются статическими факторами, которые в равной степени относятся к жидкостям, находящимся в покое или в движении.

Силы инерции и трения являются динамическими факторами, которые действуют только на жидкости в движении. Математическая сумма силы тяжести, приложенной силы и атмосферного давления, представляет собой статическое давление, полученное в любой зоне жидкости и в любой момент времени.

Определение пропускной способности трубопроводов ГРС

Б.К. Ковалев, заместитель директора по НИОКР

В последнее время все чаще приходится сталкиваться с примерами, когда оформление заказов на промышленное газовое оборудование ведут менеджеры, не имеющие достаточного опыта и технических знаний в отношении предмета закупок. Иногда результатом становится не вполне корректная заявка или принципиально неверный подбор заказываемого оборудования. Одной из наиболее распространенных ошибок является выбор номинальных сечений входного и выходного трубопроводов газораспределительной станции, сориентированный только на номинальные значения давления газа в трубопроводе без учета скорости потока газа. Цель данной статьи – выдача рекомендаций по определению пропускной способности трубопроводов ГРС, позволяющих при выборе типоразмера газораспределительной станции проводить предварительную оценку ее производительности для конкретных значений рабочих давлений и номинальных диаметров входного и выходного трубопроводов.

При выборе необходимых типоразмеров оборудования ГРС одним из основных критериев является производительность, которая в значительной мере зависит от пропускной способности входного и выходного трубопроводов.

Пропускная способность трубопроводов газораспределительной станции рассчитывается с учетом требований нормативных документов, ограничивающих максимально допустимую скорость потока газа в трубопроводе величиной 25м/с. В свою очередь, скорость потока газа зависит главным образом от давления газа и площади сечения трубопровода, а также от сжимаемости газа и его температуры.

Пропускную способность трубопровода можно рассчитать из классической формулы скорости движения газа в газопроводе (Справочник по проектированию магистральных газопроводов под редакцией А.К. Дерцакяна, 1977):

где W— скорость движения газа в газопроводе, м/сек; Q — расход газа через данное сечение (при 20°С и 760 мм рт. ст.), м 3 /ч; z — коэффициент сжимаемости (для идеального газа z = 1); T = (273 + t °C) — температура газа, °К; D — внутренний диаметр трубопровода, см; p = (Pраб + 1,033) — абсолютное давление газа, кгс/см 2 (атм); В системе СИ (1 кгс/см 2 = 0,098 МПа; 1 мм = 0,1 см) указанная формула примет следующий вид:

где D — внутренний диаметр трубопровода, мм; p = (Pраб + 0,1012) — абсолютное давление газа, МПа. Отсюда следует, что пропускная способность трубопровода Qmax, соответствующая максимальной скорости потока газа w = 25м/сек, определяется по формуле:

Для предварительных расчетов можно принять z = 1; T = 20?С = 293 ?К и с достаточной степенью достоверности вести вычисления по упрощенной формуле:

Значения пропускной способности трубопроводов с наиболее распространенными в ГРС условными диаметрами при различных величинах давления газа приведены в таблице 1.

Источник

Статическое давление

Статическое давление существует в дополнение к любым динамическим факторам, которые также могут присутствовать одновременно. Закон Паскаля гласит:

Давление, создаваемое жидкостью, действует равноценно по всем направлениям и под прямым углом к содержащимся поверхностям.

Это определение касается только жидкостей, находящихся в полном покое или практически недвижимых. Определение справедливо также только для факторов, составляющих статический гидравлический напор.

Очевидно: когда скорость движения становится фактором, в расчёт берётся направление. Сила, привязанная к скорости, также должна иметь направление. Поэтому закон Паскаля, как таковой, не применяется к динамическим факторам мощности потока жидкости.

Скорость движения потока
Скорость движения потока зависит от многих факторов, включая послойное разделение жидкостной массы, а также сопротивление, создаваемое разными факторами Динамические факторы инерции и трения привязаны к статическим факторам. Скоростной напор и потери давления привязаны к гидростатическому напору жидкости. Однако часть скоростного напора всегда может быть преобразована в статический напор.

Сила, которая может быть вызвана давлением или напором при работе с жидкостями, необходима, чтобы начать движение тела, если оно находится в состоянии покоя, и присутствует в той или иной форме, когда движение тела заблокировано.

Поэтому всякий раз, когда задана скорость движения жидкости, часть ее исходного статического напора используется для организации этой скорости, которая в дальнейшем существует уже как напорная скорость.

Правила выполнения расчета

Выше указывалось, что процедуру любого гидравлического расчета регламентирует профильный Свод правил с номером 42-101–2003.

Документ свидетельствует, что основным способом выполнения исчисления является использование для этой цели компьютера со специальными программами, позволяющими рассчитать планируемую потерю давления между участками будущего газопровода или нужный диаметр труб.


Любой гидравлический расчет выполняется после создания расчетной схемы, включающей основные показатели. Более того, в соответствующие графы пользователь вносит известные данные

Если нет таких программ или человек считает, что их использование нецелесообразно, то можно применять другие, разрешенные Сводом правил, методы.

К которым относятся:

  • расчет по приведенным в СП формулам — это самый сложный способ расчета;
  • расчет по, так называемым, номограммам — это более простой вариант, чем использование формул, ведь какие-либо исчисления производить не придется, потому что необходимые данные указаны в специальной таблице и приведены в Своде правил, и их просто нужно подобрать.

Любой из методов расчета приводит к одинаковым результатам. А поэтому вновь построенный газопровод будет способен обеспечить своевременную, бесперебойную подачу планируемого количества топлива даже в часы его максимального использования.

Влияние материала труб на расчет

Для строительства газопроводов можно использовать трубы, изготовленные только из определенных материалов: стали, полиэтилена. В некоторых случаях применяются изделия из меди. Скоро будут массово использоваться металлопластиковые конструкции.

Каждая труба имеет шероховатость, что приводит к линейному сопротивлению, которое влияет на процесс перемещения газа. Причем, этот показатель значительно выше у стальных изделий, чем у пластиковых

Сегодня нужные сведения можно получить только для стальных и полиэтиленовых труб. В результате проектирование и гидравлический расчет можно выполнять только с учетом их характеристик, чего требует профильный Свод правил. А также в документе указаны необходимые для исчисления данные.

Коэффициент шероховатости всегда приравнивается к следующим значениям:

  • для всех полиэтиленовых труб, причем независимо новые они или нет, — 0,007 см;
  • для уже использовавшихся стальных изделий — 0,1 см;
  • для новых стальных конструкций — 0,01 см.

Для каких-либо других видов труб этот показатель в Своде правил не указывается. Поэтому их использовать для строительства нового газопровода не стоит, так как специалисты горгаза могут потребовать внести коррективы. А это опять же дополнительные расходы.

Гидравлический расчет газопровода: методы и способы вычисления + пример расчета

Для безопасной и безотказной работы газоснабжения его нужно спроектировать и рассчитать

Важно безупречно подобрать трубы для магистралей всех типов давления, обеспечивающих стабильную поставку газа к приборам

Чтобы подбор труб, арматуры и оборудования был максимально точным, производят гидравлический расчет трубопровода. Как его сделать? Признайтесь, вы не слишком сведущи в этом вопросе, давайте разбираться.

Мы предлагаем ознакомиться со скрупулезно подобранной и досконально обработанной информацией о вариантах производства гидравлического расчета для газопроводных систем. Использование представленных нами данных обеспечит подачу в приборы голубого топлива с требующимися параметрами давления. Тщательно проверенные данные опираются на регламент нормативной документации.

В статье предельно обстоятельно рассказано о принципах и схемах производства вычислений. Приведен пример выполнения расчетов. В качестве полезного информативного дополнения использованы графические приложения и видео-инструкции.

Общие положения

При проектировании трубопроводов для транспорта газа выбор размеров труб осуществляется на основании их гидравлического расчета, имеющего целью определить внутренний диаметр труб для пропуска необходимого количества газа, и что важно отметить, при допустимых для конкретных условий потерях давления. Основной особенностью газораспределительных сетей населенного пункта, отличающей их от других инженерных систем и, соответственно, определяющей специфику гидравлического расчета, является отсутствие на трассе нагнетателей давления. Транспортирование осуществляется лишь за счет энергии, полученной от компрессорных установок на магистральных сетях

В связи с этим потери давления в системах газоснабжения в пределах населенного пункта достаточно жестко регламентируются (см. пункт. 3.25 ). Таким образом, выполняя должным образом гидравлический расчет, проектировщик должен получить оптимальное решение: с одной стороны диаметры труб не должны создавать при движении чрезвычайно больших потерь давления, а с другой стороны нужно естественно стремиться к малой материалоемкости систем.

Другой особенностью газораспределительных систем является обязательный учет сжимаемости транспортируемой среды. Это несколько усложняет основные расчетные зависимости, вывод которых содержится в . Так для отдельного расчетного участка газовой сети низкого давления потери давления (Па) вследствие трения определяются по формуле


.

Расчетный участок сети среднего или высокого давления будет уже характеризоваться квадратичным перепадом давления (кПа2)


.

В представленных формулах естественно важна конкретизация расчетной зависимости для коэффициента гидравлического трения и величины абсолютной шероховатости внутренней поверхности.

Гидравлический расчет можно производить тремя способами. Первый из них основан на использовании номограмм (см., напр., ), по которым для заданного диаметра и расхода можно весьма просто определить потери давления на рассматриваемом участке. Недостатком является низкая точность получаемых результатов. Второй способ, позволяющий получать более точные результаты, предполагает применение расчетных таблиц (см., напр., ). В них содержатся численные значения удельных потерь давления (Па/м, кПа2/м) для дискретных значений


и


. В связи с этим здесь возникает необходимость применения линейной интерполяции, что несколько усложняет процедуру расчета. Помимо этого для рассмотренных двух способов необходимо значения, взятые из расчетных таблиц или номограмм, умножать на коэффициент по плотности. Третий способ основан на непосредственном расчете по представленным выше формулам при использовании ЭВМ или программируемых калькуляторов, причем последние должны иметь возможность производить вычисления степенных выражений с вещественными показателями. Данный способ особенно полезен при больших объемах вычислений, но требует от проектировщика наличия хотя бы простейшей программы.

Помимо линейных потерь вследствие трения при движении газа в трубопроводах в определенных элементах систем, где характерно изменение скорости и направление потока, создаются местные сопротивления. Для наружных систем их учет производится достаточно просто путем увеличения длины расчетного участка на 10 %. Для внутренних же систем необходим детальный учет отдельных местных сопротивлений в соответствии с формулой


,

где -расчетная длина участка газопровода;


-фактическая его длина;


-сумма коэффициентов местных сопротивлений, расположенных на рассматриваемом расчетном участке;


-эквивалентная длина прямолинейного участка газопровода, путевые потери давления в котором равны потерям давления в местном сопротивлении со значением


. Последняя характеристика в общем случае определяется по формуле


,

а для различных режимов течения формулы для эквивалентной длины можно найти в 3.28 или же, не рассчитывая ее, определить по номограммам или расчетным таблицам.

При определении потерь давления в газопроводах низкого давления должны учитываться также потери, вызываемые разностью плотности газа и воздуха, то есть гидростатический напор, Па,


,

где


-разность абсолютных высотных отметок начальных и конечных участков газопровода, м;


-ускорение силы тяжести;


и


-плотности газа и воздуха при нормальных условиях.

Закон Паскаля

Фундаментальная основа современной гидравлики сформировалась, когда Блезу Паскалю удалось обнаружить, что действие давления жидкости неизменно в любом направлении. Действие жидкостного давления направлено под прямым углом к площади поверхностей.

Если измерительное устройство (манометр) разместить под слоем жидкости на определенной глубине и направлять его чувствительный элемент в разные стороны, показания давления будут оставаться неизменными в любом положении манометра.

То есть давление жидкости никак не зависит от смены направления. Но давление жидкости на каждом уровне зависит от параметра глубины. Если измеритель давления перемещать ближе к поверхности жидкости, показания будут уменьшаться.

Соответственно, при погружении измеряемые показания будут увеличиваться. Причём в условиях удвоения глубины, параметр давления также удвоится.

Закон Паскаля для жидкости
Закон Паскаля наглядно демонстрирует действие давления воды в самых привычных условиях для современного быта Отсюда логичный вывод: давление жидкости следует рассматривать прямо пропорциональной величиной для параметра глубины. В качестве примера рассмотрим прямоугольный контейнер размерами 10х10х10 см., который заполнен водой на 10 см глубины, что по объёмной составляющей будет равняться 10 см3 жидкости.

Этот объём воды в 10 см3 весит 1 кг. Используя имеющуюся информацию и уравнение для расчёта, несложно вычислить давление на дне контейнера. Например: вес столба воды высотой 10 см и площадью поперечного сечения 1 см2 составляет 100 г (0,1 кг). Отсюда давление на 1 см2 площади:

P = F / S = 100 / 1 = 100 Па (0,00099 атмосферы)

Если глубина столба воды утроится, вес уже будет составлять 3 * 0,1 = 300 г (0,3 кг), и давление, соответственно увеличится втрое. Таким образом, давление на любой глубине жидкости равноценно весу столба жидкости на этой глубине, поделённому на площадь поперечного сечения столба.

Давление водяного столба
Давление водяного столба: 1 — стенка контейнера для жидкости; 2 — давление столба жидкости на донную часть сосуда; 3 — давление на основание контейнера; А, С — области давления на боковины; В — прямой водяной столб; Н — высота столба жидкости Объем жидкости, создающей давление, называется гидравлический напор жидкости. Давление жидкости благодаря гидравлическому напору, также остаётся зависимым от плотности жидкости.

Вариант вычислений с помощью ПК

Выполнение исчисления с использованием компьютера является наименее трудоемким — все, что требуется от человека, это вставить в соответствующие графы нужные данные.

Поэтому гидравлический расчет делается за несколько минут, причем для этой операции не потребуется большого запаса знаний, который необходим при использовании формул.

Для его правильного выполнения необходимо взять из технических условий следующие данные:

  • плотность газа;
  • коэффициент кинетической вязкости;
  • температуру газа в своем регионе.

Необходимые техусловия получают в горгазе населенного пункта, в котором будет строиться газопровод. Собственно, с получения этого документа и начинается проектирование любого трубопровода, ведь там содержатся все основные требования к его конструкции.

Использование специальных программ является простейшим способом гидравлического расчета, исключающим поиск и изучение формул для проведения вычислений

Далее застройщику необходимо узнать расход газа для каждого прибора, который планируется подключить к газопроводу. К примеру, если топливо будет транспортироваться в частный дом, то там чаще всего используются плиты для приготовления пищи, всевозможные отопительные котлы, а в их паспортах всегда стоят нужные цифры.

Кроме того, потребуется знать количество конфорок у каждой плиты, которая будет подключена к трубе.

На следующем этапе сбора необходимых данных отбирается информация о падении давления в местах установки какого-либо оборудования — это может быть счетчик, клапан отсекатель, термозапорный клапан, фильтр, прочие элементы.

В этом случае нужные цифры найти просто — они содержатся в специальной таблице, приложенной к паспорту каждого изделия

Проектировщику следует обратить внимание на то, что должно указываться падение давления при максимальном потреблении газа


Из специальной таблицы, приложенной к паспорту изделий, можно узнать сведения о потере давления при подключении приборов к сети

На следующем этапе рекомендуется узнать, каково будет давление голубого топлива в точке врезки. Такие сведения могут содержать технические условия своего горгаза, ранее составленная схема будущего газопровода.

Если сеть будет состоять из нескольких участков, то их необходимо пронумеровать и указать фактическую длину. Кроме того, для каждого следует прописать все изменяемые показатели отдельно — это общий расход любого прибора, который будет использоваться, падение давления, другие значения.

В обязательном порядке понадобится коэффициент одновременности. Он учитывает возможность совместной работы всех потребителей газа, подключенных к сети. Например, всего отопительного оборудования, расположенного в многоквартирном или же частном доме.

Такие данные используются программой, выполняющей гидравлический расчет, для определения максимальной нагрузки на каком-либо участке или во всем газопроводе.

Для каждой отдельной квартиры или дома указанный коэффициент рассчитывать не нужно, так как его значения известны и указаны в приложенной ниже таблице:


Таблица с коэффициентами одновременности, данные из которой используются при любом виде расчетов. Достаточно выбрать графу, соответствующую конкретному бытовому прибору, и взять нужную цифру

Если на каком-то объекте планируется использовать более двух обогревательных котлов, печей, емкостных водонагревателей, то показатель одновременности всегда будет равняться 0,85. Что и нужно будет указать в соответствующей графе, используемой для расчета, программы.

Далее следует указать диаметр труб, а еще понадобятся коэффициенты их шероховатости, которые будут использоваться при строительстве трубопровода. Эти значения стандартные и их легко можно найти в Своде правил.

О работе с «микропотоками»

Если задача вообще не предполагает работы с потоками со скоростью более 1.5 м/c и речь идет о газообразной среде, то можно использовать датчики серии MFS02 (Micro Flow Sense). MFS02 имеет максимальную чувствительность (0,0003 м/с) и скорость срабатывания (время отклика менее 10 мс).
Структурно датчик MFS02 похож на FS2 и состоит из микронагревателя, пары датчиков температуры и дополнительного компенсирующего датчика. Однако MFS02 изготавливаются по другому технологическому процессу: в стеклокерамической подложке датчика выделяется зона, представляющая собой мембрану. Предполагается, что в поток погружается только мембрана, поэтому именно на ней располагаются компоненты для калориметрических измерений, а компенсирующий датчик температуры установлен вне мембраны.

Датчик MFS02 имеет размер всего 3.5 x 5.1 мм, а к контактным площадкам довольно сложно подпаяться, поэтому MFS02 также доступен в составе плат-расширений, предоставляющих доступ к выводам элемента.

Определение расхода теплоносителя и диаметров труб

Вначале каждую отопительную ветвь надо разбить на участки, начиная с самого конца. Разбивка делается по расходу воды, а он изменяется от радиатора к радиатору. Значит, после каждой батареи начинается новый участок, это показано на примере, что представлен выше. Начинаем с 1-го участка и находим в нем массовый расход теплоносителя, ориентируясь на мощность последнего отопительного прибора:

G = 860q/ ∆t, где:

  • G – расход теплоносителя, кг/ч;
  • q – тепловая мощность радиатора на участке, кВт;
  • Δt– разница температур в подающем и обратном трубопроводе, обычно берут 20 ºС.

Для первого участка расчет теплоносителя выглядит так:

860 х 2 / 20 = 86 кг/ч.

Полученный результат надо сразу нанести на схему, но для дальнейших расчетов он нам понадобится в других единицах – литрах в секунду. Чтобы сделать перевод, надо воспользоваться формулой:

GV = G /3600ρ, где:

  • GV – объемный расход воды, л/сек;
  • ρ– плотность воды, при температуре 60 ºС равна 0.983 кг / литр.

В данных таблицах опубликованы значения диаметров стальных и пластмассовых труб в зависимости от расхода и скорости движения теплоносителя. Если открыть страницу 31, то в таблице 1 для стальных труб в первом столбце указаны расходы в л/сек. Чтобы не производить полный расчет труб для системы отопления частого дома, надо просто подобрать диаметр по расходу, как показано ниже на рисунке:

Итак, для нашего примера внутренний размер прохода должен составлять 10 мм. Но поскольку такие трубы не используются в отоплении, то смело принимаем трубопровод DN15 (15 мм). Проставляем его на схеме и переходим ко второму участку. Так как следующий радиатор имеет такую же мощность, то применять формулы не нужно, берем предыдущий расход воды и умножаем его на 2 и получаем 0.048 л/сек. Снова обращаемся к таблице и находим в ней ближайшее подходящее значение. При этом не забываем следить за скоростью течения воды v (м/сек), чтобы она не превышала указанные пределы (на рисунках отмечена в левом столбце красным кружочком):

Как видно на рисунке, участок №2 тоже прокладывается трубой DN15. Далее, по первой формуле находим расход на участке №3:

860 х 1,5 / 20 = 65 кг/ч и переводим его в другие единицы:

65 / 3600 х 0,983 = 0.018 л/сек.

Прибавив его к сумме расходов двух предыдущих участков, получаем: 0.048 + 0.018 = 0.066 л/сек и вновь обращаемся к таблице. Поскольку у нас в примере делается не расчет гравитационной системы, а напорной, то по скорости теплоносителя труба DN15 подойдет и на этот раз:

Идя таким путем, просчитываем все участки и наносим все данные на нашу аксонометрическую схему:

Об определении направления потока

Термоанемометрические расходомеры имеют некоторые очевидные ограничения. В частности, они не позволяют определить направление потока и не подходят для приложений, требующих высокой чувствительности датчика.
Калориметрические расходомеры, напротив, предназначены для относительно медленных потоков газа с переменным направлением. Калориметрический датчик состоит из трех элементов – микронагревателя и двух датчиков, измеряющих температуру до и после него. В отсутствии потока тепловое пятно, излучаемое нагревателем, неподвижно, поэтому справа и слева от нагревателя сплошная среда имеет одну и ту же температуру. При возникновении потока тепловое пятно «сдвигается» согласно направлению и скорости потока. Таким образом, при известных параметрах трубы и характеристиках среды скорость потока может быть измерена по разности показаний датчиков температуры.

При производстве колориметрического датчика на керамическую подложку также наносятся платиновые дорожки и соединения между ними — микронагреватель и два датчика температуры.

Поскольку при наличии потока нагревательный элемент охлаждается, а для измерений этот процесс уже не используется, на датчике расхода предусматривается дополнительный компенсационный датчик температуры.

По такому принципу построены датчики серии FS2. С их помощью можно определять как направление, так и скорость потока. В диапазоне от 0 до 2.5 м/c датчик имеет чувствительность 0.001 м/c.

Диапазон измерений калориметрических датчиков ограничивается самим принципом его работы – при определенной скорости потока тепловое пятно «сдвигается» слишком далеко и разность показателей правого и левого датчиков уже не позволяет судить о скорости потока.

Это досадное свойство калориметрических датчиков довольно просто обходится. Когда поток достигает определенной скорости, можно «переключиться» на работу в термоанемометрическом режиме — начать использовать пару нагреватель + компенсирующий датчик температуры по уже известному нам термоанемометрическому принципу.

При использовании комбинации двух способов измерения модуль величины скорости потока на большей части диапазона определяется квадратичной функцией от напряжения Uflow (нижний график), а направление потока – по напряжению с полномостовой схемы, состоящей из пары датчиков и микронагревателя.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]