Комфорт в доме трудно представить без водопровода. А появление новой техники в виде стиральной, посудомоечной машин, бойлера и прочих агрегатов ещё больше повысило его роль в жилье образца 21 века. Но эти агрегаты требуют, чтобы вода поступала из водопровода с определённым напором. Поэтому человек, решивший обустроить свой дом системой водоснабжения, должен знать, как произвести расчёт требуемого давления воды в трубопроводе, чтобы все устройства работали нормально.
Для нормального функционирования водопровода давление в нем должно соответствовать нормам
Определение показателя
Давление в трубопроводе принято подразделять на следующие виды: рабочее, условное, пробное и расчётное. Без знания их отличий произвести расчёт перепада давления транспортируемой по инженерной коммуникации жидкости будет сложно. Соответственно, при подборе подходящих элементов водопровода хозяин столкнётся с трудностями, не позволяющими обеспечить комфортное пребывание в жилом помещении.
- Рабочее. Это наружное или внутреннее, обязательно максимальное избыточное давление, фиксируемое при стандартных составляющих протекания процесса транспортировки воды в нормальных условиях.
- Условное. Используют этот показатель при расчёте прочности трубопроводов (и сосудов), которые функционируют под определённым давлением при температуре воды 20˚С.
- Пробное. Этот простой показатель измеряется во время испытания конструкции. На его основе отслеживается поведение элементов системы при изменении давления в водопроводе. Такой подход служит своего рода генеральной страховкой перед прокладыванием сети.
- Расчётное. Под таковым подразумевается максимальное избыточное давление в полости трубопровода, продуцируемое транспортируемым по нему веществом. Следует учитывать, что воздействию подвергаются не только трубы, но и все элементы, входящие в состав инженерной коммуникации. Именно на основе расчётного давления определяется толщина стенки водопроводной трубы. От этого зависит функциональность, а также длительность эксплуатации системы и, конечно же, безопасность обитателей дома.
Напор воды в кране зависит от давления в водопроводной системе
10.1. Вычисление давления
В водолазной практике часто приходится встречаться с вычислением механического, гидростатического и газового давления широкого диапазона величин. В зависимости от значения измеряемого давления применяют различные единицы.
В системах СИ и МКС единицей давления служит паскаль (Па)
, в системе МКГСС — кгс/см2 (техническая атмосфера — ат). В качестве внесистемных единиц давления применяются тор (мм рт. ст.), атм (физическая атмосфера),м вод. ст., а в английских мерах — фунт/дюйм2. Соотношения между различными единицами давления приведены в табл, 10.1.
Механическое давление измеряется силой, действующей перпендикулярно на единицу площади поверхности тела:
где р — давление, кгс/см2; F — сила, кгс; S — площадь, см2.
Пример 10.1.
Определить давление, которое водолаз оказывает на палубу судна и на грунт под водой, когда он делает шаг (т. е. стоит на одной ноге). Вес водолаза в снаряжении на воздухе 180 кгс, а под водой 9 кгс. Площадь подошвы водолазной галоши принять 360 см2. Решение. 1) Давление, передаваемое водолазной галошей на палубу судна, по (10.1):
р = 180/360 = 0.5 кгс/см
или в единицах СИ
р = 0,5 * 0,98.105 = 49000 Па = 49 кПа.
Таблица 10.1. Соотношения между различными единицами давления
2) Давление, передаваемое водолазной галошей на грунт под водой: или в единицах СИ р = 0,025*0,98*105 = 2460 Па = 2,46 кПа.
Гидростатическое давление
жидкости везде перпендикулярно к поверхности, на которую оно действует, и возрастает с глубиной, но остается постоянным в любой горизонтальной плоскости.
Если поверхность жидкости не испытывает внешнего давления (например, давления воздуха) или его не учитывают, то давление внутри жидкости называют избыточным давлением
где p — давление жидкости, кгс/см2; р — плотность жидкости, гс» с4/см2; g — ускорение свободного падения, см/с2; Y — удельный вес жидкости, кг/см3, кгс/л; Н — глубина, м.
Если поверхность жидкости испытывает внешнее давление пп. то давление внутри жидкости
Если на поверхность жидкости действует атмосферное давление воздуха, то давление внутри жидкости называют
абсолютным давлением
(т. е. давлением, измеряемым от нуля — полного вакуума): где Б — атмосферное (барометрическое) давление, мм рт. ст. В практических расчетах для пресной воды принимают Y = l кгс/л и атмосферное давление p0 = 1 кгс/см2 = = 10 м вод. ст., тогда избыточное давление воды в кгс/см2 а абсолютное давление воды
Пример 10.2.
Найти абсолютное давление морской воды действующее на водолаза на глубине 150 м, если барометрическое давление равно 765 мм рт. ст., а удельный вес морской воды 1,024 кгс/л.
Решение.
Абсолютное давление волы по (10/4)
приолиженное значение абсолютного давления по (10.6) В данном примере использование для расчета приближенной формулы (10.6) вполне оправданно, так как ошибка вычисления не превышает 3%.
Пример 10.3.
В полой конструкции, содержащей воздух под атмосферным давлением рa = 1 кгс/см2, находящейся под водой, образовалось отверстие, через которое стала поступать вода (рис. 10.1). Какую силу давления будет испытывать водолаз, если он попытается это отверстие закрыть рукой? Площадь «У сечения отверстия равна 10X10 см2, высота столба воды Н над отверстием 50 м.
Рис. 9.20. Наблюдательная камера «Галеацци»: 1 — рым; 2 — устройство отдачи троса и среза кабеля; 3 — штуцер для телефонного ввода; 4 — крышка люка; 5 — верхний иллюминатор; 6 — резиновое привальное кольцо; 7 — нижний иллюминатор; 8 — корпус камеры; 9 — баллон кислородный с манометром; 10 — устройство отдачи аварийного балласта; 11 — аварийный балласт; 12 — кабель светильника; 13 — светильник; 14 — электровентилятор; 15—телефон- микрофон ; 16 — аккумуляторная батарея; 17 — коробка регенеративная рабочая; 18 — иллюминатор крышки люка
Решение.
Избыточное давление воды у отверстия по (10.5) P = 0,1-50 = 5 кгс/см2.
Сила давления на руку водолаза из (10.1)
F = Sp = 10*10*5 = 500 кгс =0,5 тс.
Давление газа, заключенного в сосуд, распределяется равномерно, если не принимать во внимание его весомость, которая при размерах сосудов, применяемых в водолазной практике, оказывает ничтожное влияние. Величина давления неизменной массы газа зависит от объема, который он занимает, и температуры.
Зависимость между давлением газа и его объемом при неизменной температуре устанавливается выражением
P1 V1 = p2V2 (10.7)
где р1 и р2 — первоначальное и конечное абсолютное давление, кгс/см2;
V1 и V2 — первоначальный и конечный объем газа, л. Зависимость между давлением газа и его температурой при неизменном объеме устанавливается выражением
где t1 и t2 — начальная и конечная температура газа, °С.
При неизменном давлении аналогичная зависимость существует между объемом и температурой газа
Зависимость между давлением, объемом и температурой газа устанавливается объединенным законом газового состояния
Пример 10.4.
Емкость баллона 40 л, давление воздуха в нем по манометру 150 кгс/см2. Определить объем свободного воздуха в баллоне, т. е. объем, приведенный к 1 кгс/см2.
Решение.
Начальное абсолютное давление р = 150+1 = 151 кгс/см2, конечное р2 = 1 кгс/см2, начальный объем V1 =40 л. Объем свободного воздуха из (10.7)
Пример 10.5.
Манометр на баллоне с кислородом в помещении с температурой 17° С показывал давление 200 кгс/см2. Этот баллон перенесли на палубу, где на другой день при температуре —11° С его показания снизились до 180 кгс/см2. Возникло подозрение на утечку кислорода. Проверить правильность подозрения.
Решение.
Начальное абсолютное давление p2 =200 + 1 = =201 кгс/см2, конечное р2 = 180 + 1 = 181 кгс/см2, начальная температура t1 = 17°С, конечная t2 =—11° С. Расчетное конечное давление из (10.8)
Подозрения лишены оснований, так как фактическое и расчетное давления равны.
Пример 10.6.
Водолаз под водой расходует 100 л/мин воздуха, сжатого до давления глубины погружения 40 м. Определить расход свободного воздуха (т. е. при давлении 1 кгс/см2).
Решение.
Начальное абсолютное давление на глубине погружения по (10.6)
Р1 = 0,1*40 =5 кгс/см2.
Конечное абсолютное давление Р2 = 1 кгс/см2
Начальный расход воздуха Vi = l00 л/мин.
Расход свободного воздуха по (10.7)
Парциальное давление газа
, входящего в состав воздуха (искусственной дыхательной смеси), определяется по номо- грамме рис. 10.2 или из выражения где рсм — парциальное давление газа в смеси, кгс/см2; Рсм — абсолютное давление газовой смеси, кгс/см2; С — объемное содержание газа в смеси, %.
Пример 10.7.
Определить парциальное давление газов, входя щих в состав воздуха, подаваемого в скафандр водолаза на поверхности и на глубине 40 м, если анализ показал содержание азота 79%, кислорода 20% и углекислого газа 1%.
Решение.
Абсолютное давление воздуха на поверхности Рсм -1 кгс/см2.
Рис. 10.2. Номограмма для определения парциального давления газа рг в зависимости от процентного содержания газа С и абсолютного давления газовой смеси РСМ
Парциальное давление газов на поверхности по (10.11): Приближенно эти же результаты можно получить и по номограмме рис. 10.2.
Остаточное давление газа в баллонах.
Для получения газовых смесей способом перепуска (см. схему а рис. 8.15) часто необходимо знать остаточное давление газа (кислорода) в баллоне подачи газа (баллон К), которое равно
где por —остаточное абсолютное давление газа (кислорода) в баллоне подачи, кгс/см2; Рсм — абсолютное давление газовой смеси в смесительном баллоне, кгс/см2; С — содержание газа (кислорода) в газовой смеси по объему, %.
Вперед Оглавление Назад
Простой пример расчета давления в трубе
Как известно, не так давно водопровод подключался к водонапорной башне. Благодаря именно этому сооружению в сети водопровода создаётся давление. Единица измерения данной характеристики – атмосфера. Причём, размер расположенной вверху башни ёмкости не влияет на значение этого параметра, он зависит только лишь от высоты башни.
Полезно знать! На практике давление измеряется в метрах водяного столба. При заливании воды в трубу высотой 10 метров, в нижней точке будет фиксироваться давление, равное одной атмосфере.
Рассмотрим пример с домом в 5 этажей. Его высота – 15 метров. То есть на один этаж приходится 3 метра. Башня высотой 15 метров создаст на первом этаже давление 1,5 атмосферы. Значение этого показателя в трубе на втором этаже будет уже 1,2 атмосферы. Получается это вычитанием из числа 15 высоты одного этажа – 3 метра, и делением результата на 10. Проделав дальнейший расчёт, нам станет понятно, что на 5-м этаже давление будет отсутствовать. Логика подсказывает, что для обеспечения водой людей, проживающих на последнем этаже потребуется соорудить более высокую башню. А если речь идёт, например, о 25-этажном доме? Возводить такие большие сооружения никто не будет. С этой целью современные системы водоснабжения оборудуются глубинными насосами.
Давление на выходе подобного агрегата высчитывается очень просто. Например, если глубинный насос, мощности которого хватает поднять воду до отметки 50 метров водяного столба, погрузить в скважину на 15 метров, на уровне поверхности земли он создаст давление 3,5 атмосферы (50-15/10 = 3,5).
Обеспечить необходимый показатель давления в системе можно при помощи насоса
Как рассчитывается толщина трубы от действия давления
Когда вода движется по трубе, возникает сопротивление от трения её о стенки, а также о различные преграды. Это явление получило название гидравлическое сопротивление трубопровода. Его численное значение находится в прямой пропорциональной зависимости от скорости потока. Из предыдущего примера мы уже знаем, что на разных высотах давление воды различно, и эту особенность следует учитывать при расчёте внутреннего диаметра трубы, то есть её толщины. Упрощённая формула для вычисления данного параметра по заданной потере напора (давления) выглядит так:
Двн = КГСопр×Дл. тр./ПД×(Уд.вес×Ск/2g),
где: Двн. – внутренний диаметр трубопровода; КГСопр. – коэффициент гидравлического сопротивления; Дл.тр — длина трубопровода; ПД – заданная или допускаемая потеря давления между конечным и начальным участками магистрали; Уд.вес. – удельный вес воды — 1000 кг/ (9815 м/; Ск. – скорость потока м/сек.; g – 9,81 м/сек2. Всем известная константа — ускорение силы тяжести.
Потеря давления в арматуре и фасонных частях трубопровода с достаточной точностью определяется по потерям в прямой трубе эквивалентной длины и с таким же условным проходом.
Как рассчитать стенки трубы по давлению
Точный расчёт данного показателя стальных труб, которые работают под воздействием избыточного внутреннего давления, включает два этапа. Сначала вычисляется так называемая расчётная толщина стенки. Затем к полученному числу прибавляется толщина износа от коррозии.
Расчет давления необходим для подбора толщины стенок трубы
Совет! Изготавливая и монтируя трубопровод, не устанавливайте отдельные случайные вставки. Чтобы не спровоцировать аварию, работайте только с теми, размеры которых совпадают с расчётными.
Таким образом, обобщённая формула для расчёта толщины стенок выглядит следующим образом:
Т= РТС+ПК,
где: Т – искомый параметр – толщина стенок; РТС – расчётная толщина стенок; ПК — прибавка на коррозионный износ.
Расчётную толщину стенки в зависимости от давления вычисляем по следующей формуле:
РТС = ВИД×Днар/230×ДР×КПШ+Р ,
где: ВИД – внутреннее избыточное давление; Днар. – наружный диаметр трубы; ДР — допустимое напряжение на разрыв; КПШ – коэффициент прочности шва. Его значение зависит от технологии изготовления труб. На завершающем этапе расчета стенки трубы по давлению прибавляем к РТС значение параметра ПК. Берётся оно из справочника.
Как измеряется давление потока?
В конструкциях трубки Пито (с двойными стенками) ударное давление направлено вперёд, в поток. В обычных конструкциях ось движения рабочей среды совмещается с осью внешней трубки. Оба сигнала давления направляются по трубопроводу на индикатор или преобразователь.
Для промышленных применений статическое давление может быть измерено тремя способами:
- Через отводы в стенке трубы.
- Статическими зондами Пито, вставленными в технологический поток.
- При помощи небольших отверстий, расположенных либо на самой трубке Пито, либо на отдельном аэродинамическом элементе.
Точность функционирования расходомеров данной конструкции зависит от формы аэродинамических тел, окружённых постоянным потоком рабочей среды, а также от характеристик её вязкости, скорости и сжимаемости. Ключом к повышению точности показаний является минимизация кинетической составляющей при измерении давления.
Специально разработанные датчики Пито пригодны и для работ в пульсирующих потоках. Для этого используется зонд Пито, заполненный силиконовым маслом, который служит для передачи давления процесса. В высокочастотных пульсирующих применениях масло служит также средством демпфирования пульсаций и усреднения давления.
Давление и диаметр трубы
Правильное определение сечения труб не менее важно, чем их выбор по материалу изготовления. При некорректном расчёте диаметра и давления, в трубе возникнет турбулентность воздуха, в ней присутствующем, и в потоке воды. Из-за этого движение жидкости по трубе будет сопровождаться повышенным шумом, а на внутренней поверхности ветки водоснабжения сформируется большое количество известковых отложений. Кроме того, следует помнить, что существование зависимости давления от диаметра трубы может негативно отразиться на пропускной способности водопровода. На практике, многие обитатели квартир и домов сталкивались с ситуацией, когда при одновременном включении нескольких кранов напор воды резко падал. Возникает эта неприятность по двум причинам: когда давление упало во всей системе и при заниженном диаметре подключённых труб.
От диаметра трубы зависит пропускная способность водопроводной сети
Ниже приведена таблица для максимального расчётного расхода воды через трубопроводы наиболее распространённых диаметров при различном значении давления.
Таблица 1
Расход | Пропускная способность. Единица измерения – кг/час | |||||||||
Ду трубы | 100 | 80 | 65 | 50 | 40 | 32 | 25 | 20 | 15 | |
мбар/м | Па/м | 0,3 м/сек | 0,15 м/сек | <0,15 м/сек | ||||||
3,00 | 300 | 56160 | 27900 | 18000 | 8892 | 4680 | 3078 | 1415 | 767 | 331 |
2,80 | 280 | 54360 | 26928 | 17338 | 8568 | 4356 | 2970 | 1364 | 742 | 317 |
2,60 | 260 | 52200 | 25920 | 16740 | 8244 | 4356 | 2855 | 1310 | 713 | 306 |
2,40 | 240 | 50400 | 24876 | 16056 | 7920 | 4176 | 2740 | 1256 | 680 | 288 |
2,20 | 220 | 47880 | 23760 | 15336 | 7560 | 3996 | 2617 | 1202 | 652 | 281 |
2,00 | 200 | 45720 | 22644 | 14580 | 7200 | 3780 | 2488 | 1151 | 619 | 266 |
1,80 | 180 | 43200 | 21420 | 13824 | 6804 | 3589 | 2354 | 1080 | 583 | 252 |
1,60 | 160 | 40680 | 20160 | 12996 | 6408 | 3373 | 2210 | 1015 | 547 | 234 |
1,40 | 140 | 38160 | 18792 | 12132 | 5976 | 3143 | 2059 | 943 | 511 | 220 |
1,20 | 120 | 35100 | 17352 | 11196 | 5508 | 2898 | 1897 | 871 | 472 | 102 |
1,00 | 100 | 31932 | 15768 | 10152 | 5004 | 2632 | 1724 | 788 | 425 | 184 |
0,975 | 97,5 | 31500 | 15552 | 10044 | 4932 | 2596 | 1699 | 778 | 421 | 180 |
0,950 | 95,0 | 31104 | 15372 | 9900 | 4860 | 2560 | 1678 | 767 | 414 | 176 |
0,925 | 92,5 | 30672 | 15156 | 9756 | 4788 | 2524 | 1652 | 756 | 407 | 176 |
0,900 | 90,0 | 30240 | 14940 | 9612 | 4716 | 2488 | 1627 | 745 | 403 | 173 |
В большинстве стояках среднее значение давления находится в диапазоне атмосфер.
Определение закона Паскаля
Итак, мы подошли к формулировке закона Паскаля, и звучит она так:
Давление, производимое на жидкость или газ, передается в любую точку одинаково во всех направлениях.
Обратите внимание — закон работает только с жидкостями и газами. Дело в том, что молекулы жидких и газообразных веществ под давлением ведут себя совсем не так, как молекулы твердых тел. Если молекулы жидкости и газа движутся почти свободно, то молекулы твердых тел так не умеют. Они могут лишь колебаться, немного отклоняясь от исходного положения. Именно благодаря свободному передвижению молекулы газа и жидкости оказывают давление во всех направлениях.
Рассмотрим опыт с шаром Паскаля, чтобы стало понятнее.
Присоединим к трубе с поршнем полый шар со множеством небольших отверстий. Зальем в шар воду и будем давить на поршень. Давление в трубе вырастет и вода будет выливаться через отверстия, причем напор всех струй будет одинаковым. Такой же результат получится, если вместо воды в шарике будет газ.
Важный момент
У Земли есть атмосфера. Эта атмосфера создает давление, которое добавляется ко всем другим. То есть если мы давим рукой на стол, то давление, которое испытывает стол — это давление нашей руки плюс атмосферное.
Расчёт домашнего водопровода
С практической точки зрения давление в водопроводе чаще всего ассоциируется с объёмом поставляемой воды за единицу времени, то есть с пропускной способностью ветки водоснабжения. В этом контексте и будет рассмотрен вопрос расчёта бытового водопровода. После изучения паспортных данных приборов и агрегатов, потребляющих воду, суммируется общий расход. Затем к полученной цифре добавляется расход всех установленных и используемых водоразборных кранов.
Для домашнего водопровода, работающего от скважины, выбор труб зависит от мощности насоса
Полезная информация! Одно такое сантехническое устройство пропускает через себя за одну минуту порядка 5-6 литров воды.
После этого все числа суммируются, и на выходе получается общий расход в доме воды. С учётом этих данных, покупается труба с диаметром, который обеспечит нужным давлением и, соответственно, количеством воды все водоразборные приборы, работающие одновременно.
Если домашний водопровод планируется подключить к городской сети, у хозяина выбора нет, он будет вынужден пользоваться тем, что имеется. Иное дело, если речь идёт о частном доме, питающимся от скважины. Тогда следует покупать насос, способный обеспечить водопровод давлением, которое соответствует расходам. Выбор производится по паспортным данным подобного агрегата. В определении диаметра вам поможет ниже размещённая таблица.
Таблица 2
Пропускная способность трубы | Диаметр и длина трубопровода | ||
Пропускная способность, л/мин | Диаметр трубы | Диаметр трубы | Длина водопровода, метры |
75 | 38 | 32 | Больше 30 |
50 | 32 | 25 | |
30 | 25 | 20 | Меньше 10 |
Здесь приведены параметры лишь наиболее часто используемой трубной продукции.
Давление
Идущий по рыхлому снегу человек будет в него постоянно проваливаться. А вот на лыжах он сможет передвигаться по тому же самому снегу спокойно. Казалось бы, ничего не меняется — человек воздействует на снег с одинаковой силой и на лыжах, и без них.
Дело в том, что «проваливание» в снег характеризуется не только силой — оно также зависит от площади, на которую эта сила воздействует. Площадь поверхности лыжи в 20 раз больше площади поверхности подошвы, поэтому человек, стоя на лыжах, действует на каждый квадратный сантиметр с силой в 20 раз меньшей, чем без них.
Или, например, если вы будете с одинаковой силой втыкать кнопки в пробковую доску, легче войдет та кнопка, у которой более заостренный конец, так как его площадь меньше.
Резюмируем: результат действия силы зависит не только от ее модуля, направления и точки приложения, но и от площади поверхности, к которой эта сила приложена.
А теперь подтвердим этот вывод опытами, как настоящие физики.
Возьмем небольшую доску и вобьем гвозди в ее углы. Также возьмем емкость с песком и поставим конструкцию из доски и гвоздей в эту емкость. Сначала расположим конструкцию шляпками вниз и поставим на нее гирю. Конструкция не утонет в песке, а только чуть-чуть углубится в него.
Затем перевернем конструкцию так, чтобы шляпки гвоздей оказались сверху и также поставим на доску гирю. Теперь конструкция утонет в песке.
От того, какая сила действует на каждую единицу площади поверхности, зависит результат действия силы.
Во всех примерах мы говорили о действии силы, перпендикулярной поверхности. Чтобы охарактеризовать это действие, используется величина давление.
Давление p = F/S p — давление [Па] F — сила [Н] S — площадь [м2] |
Современные средства
Если нет времени либо вы не склонны к математике, рассчитать расход воды через трубопровод с учётом перепада давления можно, воспользовавшись онлайн калькулятором. Интернет изобилует сайтами с таки инструментарием. Чтобы произвести гидравлический расчёт, необходимо учесть коэффициент потерь. Такой подход предполагает выбор:
- падения напора на погонный метр трубопровода;
- длины участка;
- внутреннего диаметра трубы;
- вида и материала водопроводной системы (пластмасса, железобетон, асбоцемент, чугун, сталь). Современные онлайн калькуляторы учитывают даже, например, меньшую шероховатость пластиковой поверхности по сравнению со стальной;
- способа расчёта сопротивления.
Кроме того, пользователю доступны опции учёта дополнительных характеристик трубопроводов, в частности, таких, как тип покрытия. Например:
- цементно-песчаное, нанесённое различными методами;
- внешнее полимерцементное или пластиковое;
- новые или проработавшие определённый срок трубопроводы с битумным покрытием либо без защитного внутреннего покрытия.
Если расчёт будет сделан правильно, при условии выполнения монтажа с соблюдением всех требований к водопроводу нарекания не возникнут.