Постановка задачи
Гидравлический расчёт при разработке проекта трубопровода направлен на определение диаметра трубы и падения напора потока носителя. Данный вид расчёта проводится с учетом характеристик конструкционного материала, используемого при изготовлении магистрали, вида и количества элементов, составляющих систему трубопроводов(прямые участки, соединения, переходы, отводы и т. д.), производительности,физических и химических свойств рабочей среды.
Многолетний практический опыт эксплуатации систем трубопроводов показал, что трубы, имеющие круглое сечение, обладают определенными преимуществами перед трубопроводами, имеющими поперечное сечение любой другой геометрической формы:
- минимальное соотношением периметра к площади сечения, т.е. при равной способности, обеспечивать расход носителя, затраты на изолирующие и защитные материалы при изготовлении труб с сечением в виде круга, будут минимальными;
- круглое поперечное сечение наиболее выгодно для перемещения жидкой или газовой среды сточки зрения гидродинамики, достигается минимальное трение носителя о стенки трубы;
- форма сечения в виде круга максимально устойчива к воздействию внешних и внутренних напряжений;
- процесс изготовления труб круглой формы относительно простой и доступный.
Подбор труб по диаметру и материалу проводится на основании заданных конструктивных требований к конкретному технологическому процессу. В настоящее время элементы трубопровода стандартизированы и унифицированы по диаметру. Определяющим параметром при выборе диаметра трубы является допустимое рабочее давление, при котором будет эксплуатироваться данный трубопровод.
Основными параметрами, характеризующими трубопровод являются:
- условный (номинальный) диаметр – DN;
- давление номинальное – PN;
- рабочее допустимое (избыточное) давление;
- материал трубопровода, линейное расширение, тепловое линейное расширение;
- физико-химические свойства рабочей среды;
- комплектация трубопроводной системы (отводы, соединения, элементы компенсации расширения и т.д.);
- изоляционные материалы трубопровода.
Условный диаметр (проход) трубопровода (DN) – это условная безразмерная величина, характеризующая проходную способность трубы, приблизительно равная ее внутреннему диаметру. Данный параметр учитывается при осуществлении подгонки сопутствующих изделий трубопровода (трубы, отводы, фитинги и др.).
Условный диаметр может иметь значения от 3 до 4000 и обозначается: DN 80.
Условный проход по числовому определению примерно соответствует реальному диаметру определенных отрезков трубопровода. Численно он выбран таким образом, что пропускная способность трубы повышается на 60-100% при переходе от предыдущего условного прохода к последующему.Номинальный диаметр выбирается по значению внутреннего диаметра трубопровода. Это то значение, которое наиболее близко к реальному диаметру непосредственно трубы.
Давление номинальное (PN) – это безразмерная величина, характеризующая максимальное давление рабочего носителя в трубе заданного диаметра, при котором осуществима длительная эксплуатация трубопровода при температуре 20°C.
Значения номинального давления были установлены на основании продолжительной практики и опыта эксплуатации: от 1 до 6300.
Номинальное давление для трубопровода с заданными характеристиками определяется по ближайшему к реально создаваемому в нем давлению. При этом,вся трубопроводная арматура для данной магистрали должна соответствовать тому же давлению. Расчет толщины стенок трубы проводится с учетом значения номинального давления.
Основные свойства
Материалы ПНД твердые и очень прочные, пластичные и долговечные. А это значит, что трубы из них получаются износостойкими и способными выдерживать значительные нагрузки: они устойчивы к растяжению, сжатию, разрыву, хорошо гнутся и не боятся трещин.
Технические показатели
- Возможный температурный диапазон плавления – от -60 до +120 0C, оптимальная эксплуатация от 0 до +40 0C,
- Максимальное давление внутри трубы может достигать 16-ти – 20-ти атм,
- Трубы из ПНД инертны к транспортируемым веществам и не изменяют их качественного состава (напр., не меняют вкуса и запаха воды),
- Не пропускают жидкостей и газов сквозь свою структуру,
- Не поддаются коррозированию в любых его видах,
- Стойки к биологическим факторам (не разрушаются микроорганизмами),
- Имеют высокие диэлектрические свойства, поэтому не поддаются действию блуждающих токов,
- Гладкие изнутри, что обеспечивает их малую засоряемость взвесями из содержимого,
- Поглощают шумы, издаваемые жидкостями при их движении по системе,
- Имеют очень большой срок службы – порядка 50-ти – 80-ти лет.
ИНТЕРЕСНО! Даже при изначальной прочности материалов их производство включает обязательные испытания на соответствие конкретным техническим показателям для каждого вида и сорта изделий: на стойкость к разрыву и высоким температурам, повышение давления и т.п.
Конструкционные особенности
Кроме разницы в качестве материала, трубы из полиэтилена низкого давления различаются конструкцией – диаметрами и толщиной стенок, что напрямую влияет на их свойства и возможности использования. В их маркировке указываются эти величины и их отношение в виде индекса SDR, который является прочностной характеристикой трубы и показателем высоты возможных для нее механических нагрузок.
Сейчас выпускаются трубные изделия из ПНД, имеющие диаметры от 10 до 1600 мм и толщину стенок от 2-х до 60-ти мм, для которых допустимо следующее давление содержимого:
Давление для ПЭ-80 | 3,2 атм | 5 атм | 6 атм | 7,5 атм | 10 атм | 12,5 атм | 16 атм |
Давление для ПЭ-100 | 4 атм | 6 атм | 8 атм | 9,5 атм | 12,5 атм | 16 атм | 20 атм |
Диаметр трубы (внешн.), мм | Толщина стенок, мм | ||||||
20 | — | — | — | — | — | 2,0 | 2,3 |
32 | — | — | — | 2,0 | 2,4 | 3,0 | 3,6 |
40 | — | — | 2,0 | 2,4 | 3,0 | 3,7 | 4,5 |
50 | — | 2,0 | 2,4 | 3,0 | 3,7 | 4,6 | 5,6 |
63 | — | 2,5 | 3,0 | 3,8 | 4,7 | 5,8 | 7,1 |
75 | 2,0 | 2,9 | 3,6 | 4,5 | 5,6 | 6,8 | 8,4 |
90 | 2,2 | 3,5 | 4,3 | 5,4 | 6,7 | 8,2 | 10,1 |
160 | 4,0 | 6,2 | 7,7 | 9,5 | 11,8 | 14,6 | 17,9 |
225 | 5,5 | 8,6 | 10,8 | 13,4 | 16,6 | 20,5 | 25,2 |
315 | 7,7 | 12,1 | 15,0 | 18,7 | 23,2 | 28,6 | 35,2 |
400 | 9,8 | 15,3 | 19,1 | 23,7 | 29,4 | 36,3 | 44,7 |
SDR 41 | SDR 26 | SDR 21 | SDR 17 | SDR 13-14 | SDR 11 | SDR 9 |
ВАЖНО! Изделия диаметрами до 160-ти мм чаще всего поставляются катушками или бухтами длиной до 500 метров, хотя могут выпускаться и в виде мерных отрезков. Трубы диаметром более 160-ти мм выпускаются только мерными отрезками.
Основные положения гидравлического расчета
Рабочий носитель (жидкость, газ, пар), переносимый проектируемым трубопроводом, в силу своих особых физико-химических свойств определяет характер течения среды в данном трубопроводе. Одним из основных показателей характеризующих рабочий носитель, является динамическая вязкость, характеризуемая коэффициентом динамической вязкости – μ.
Инженер-физик Осборн Рейнольдс (Ирландия), занимавшийся изучением течения различных сред, в 1880 году провел серию испытаний, по результату которых было выведено понятие критерия Рейнолдса (Re) – безразмерной величины, описывающей характер потока жидкости в трубе. Расчет данного критерия проводится по формуле:
Критерий Рейнольдса (Re) дает понятие о соотношении сил инерции к силам вязкого трения в потоке жидкости. Значение критерия характеризует изменение соотношения указанных сил, что, в свою очередь, влияет на характер потока носителя в трубопроводе. Принято выделять следующие режимы потока жидкого носителя в трубе в зависимости от значения данного критерия:
- ламинарный поток (Re<2300), при котором носитель-жидкость движется тонкими слоями, практически не смешивающимися друг с другом;
- переходный режим (2300
- турбулентный поток (Re>4000) – устойчивый режим, при котором в каждой отдельной точке потока происходит изменение его направления и скорости, что в итоге приводит к выравниванию скорости движения потока по объему трубы.
Критерий Рейнольдса зависит от напора, с которым насос перекачивает жидкость, вязкости носителя при рабочей температуре и геометрических размеров используемой трубы (d, длина). Данный критерий является параметром подобия для течения жидкости,поэтому, используя его, можно осуществлять моделирование реального технологического процесса в уменьшенном масштабе, что удобно при проведении испытаний и экспериментов.
Проводя расчеты и вычисления по уравнениям, часть заданных неизвестных величин можно взять из специальных справочных источников. Профессор, доктор технических наук Ф. А. Шевелев разработал ряд таблиц для проведения точного расчета пропускной способности трубы. Таблицы включают значения параметров, характеризующих как сам трубопровод (размеры, материалы), так и их взаимосвязь с физико-химическими свойствами носителя. Кроме того, в литературе приводится таблица приближенных значений скоростей движения потока жидкости, пара,газа в трубе различного сечения.
СНиП 2.04.02-84: Приложение 10 — Гидравлический расчет трубопроводов
Общие положения Расчетные расходы воды и свободные напоры расчетные расходы воды Источники водоснабжения Схемы и системы водоснабжения Водозаборные сооружения Водоподготовка Насосные станции Водоводы, водопроводные сети и сооружения на них Емкости для хранения воды Зоны санитарной охраны Охлаждающие системы оборотного водоснабжения Оборудование, арматура и трубопроводы Электрооборудование, технологический контроль, автоматизация и системы управления Строительные решения и конструкции зданий и сооружений Дополнительные требования к системам водоснабжения в особых природных и климатических условиях Приложение 1 Приложение 2 Приложение 3 Приложение 4 Приложение 5 Приложение 6 Приложение 7 Приложение 8 Приложение 9
Приложение 10 рекомендуемое
1. Потеринапора в трубопроводах систем подачи и распределения воды вызываютсягидравлическим сопротивлением труб и стыковых соединений, а также арматуры исоединительных частей.
2. Потеринапора на единицу длины трубопровода (“гидравлический уклон”) i с учетомгидравлического сопротивления стыковых соединений следует определять по формуле
где l —коэффициент гидравлическогосопротивления, определяемый по формуле (2)
где d —внутренний диаметр труб, м;
v — средняя по сечению скорость движения воды,м/с; >
g — ускорение силы тяжести, м/с2;
Re =vd/v — число Рейнольдса; В0= CRe/vd;
v —кинематический коэффициент вязкости транспортируемой жидкости, м2/с.
Значенияпоказателя степени т и коэффициентов А0,А1 и С для стальных,чугунных, железобетонных, асбестоцементных,пластмассовых и стеклянных труб должны приниматься, как правило, согласно табл. 1.
Таблица 1
№ п.п. | Вид труб | m | A0 | 1000A1 | 1000(A1/2g) | С | |
1 | Новые стальные без внутреннегозащитного покрытия или с битумным защитным покрытием | 0,226 | 1 | 15,9 | 0,810 | 0,684 | |
2 | Новые чугунные без внутреннегозащитного покрытия или с битумным защитным покрытием | 0,284 | 1 | 14,4 | 0,734 | 2,360 | |
3 | Неновые стальные и неновыечугунные без внутреннего | v 1,2 м/с | 0,30 | 1 | 17,9 | 0,912 | 0,867 |
защитного покрытия или сбитумным защитным покрытием | v ? 1,2 м/с | 0,30 | 1 | 21,0 | 1,070 | 0 | |
4 | Асбестоцементные | 0,19 | 1 | 11,0 | 0,561 | 3,51 | |
5 | Железобетонныевиброгидропрессованные | 0,19 | 1 | 15,74 | 0,802 | 3,51 | |
6 | Железобетонныецентрифугированные | 0,19 | 1 | 13,85 | 0,706 | 3,51 | |
7 | Стальные и чугунные свнутренним пластмассовым или полимерцементным покрытием, нанесенным методомцентрифугирования | 0,19 | 1 | 11,0 | 0,561 | 3,51 | |
8 | Стальные и чугунные свнутренним цементно-песчаным покрытием, нанесенным методом набрызга споследующим заглаживанием | 0,19 | 1 | 15,74 | 0,802 | 3,51 | |
9 | Стальные и чугунные свнутренним цементно-песчаным покрытием, нанесенным методом центрифугирования | 0,19 | 1 | 13,85 | 0,706 | 3,51 | |
10 | Пластмассовые | 0,226 | 0 | 13,44 | 0,685 | 1 | |
11 | Стеклянные | 0,226 | 0 | 14,61 | 0,745 | 1 |
Примечание.Значение С дано для v = 1,3 ? 10-6 м2/с(вода, t = 10°С).
Эти значения соответствуют современной технологии их изготовления.
Если гарантируемые заводом-изготовителем значения A0, А1 и С отличаются от приведенных в табл. 1, то они должны указываться в ГОСТ или технических условиях на изготовление труб.
3. При отсутствии стабилизационной обработки воды или эффективных внутренних защитных покрытий гидравлическое сопротивление новых стальных и чугунных труб быстро возрастает. В этих условиях формулы для определения потерь напора в новых стальных и чугунных трубах следует использовать только при проверочных расчетах в случае необходимости анализа условий работы системы подачи воды в начальный период ее эксплуатации.
Стальные и чугунные трубы следует, как правило, применять с внутренними полимер-цементными, цементно-песчаными или полиэтиленовыми защитными покрытиями. В случае их применения без таких покрытий и отсутствия стабилизационной обработки к значениям А1 и С по табл. 1 и значению К по табл. 2 следует вводить коэффициент (не более 2), величина которого должна быть обоснована данными о возрастании потерь напора в трубопроводах, работающих в аналогичных условиях.
4. Гидравлическое сопротивление соединительных частей следует определять по справочникам, гидравлическое сопротивление арматуры — по паспортам заводов-изготовителей.
При отсутствии данных о числе соединительных частей и арматуры, устанавливаемых на трубопроводах, потери напора в них допускается учитывать дополнительно в размере 10— 20 % величины потери напора в трубопроводах.
5. Притехнико-экономических расчетах и выполнении гидравлических расчетов системподачи и распределения воды на ЭВМ потери напора в трубопроводах рекомендуетсяопределять по формуле
где q — расчетный расход воды, м3/с;
d — расчетный внутренний диаметр труб, м.
Значениякоэффициента К и показателей степени n и p следует приниматьсогласно табл. 2.
№ п.п. | Вид труб | 1000 К | p | n |
1 | Новые стальные без внутреннегозащитного покрытия или с битумным защитным покрытием | 1,790 | 5,1 | 1,9 |
2 | Новые чугунные без внутреннего защитного покрытия или с битумным защитнымпокрытием | 1,790 | p>5,1 | 1,9 |
3 | Неновые стальные и неновыечугунные без внутреннего защитного покрытия илис битумным защитным покрытием | 1,735 | 5,3 | 2 |
4 | 1,180 | 4,89 | 1,85 | |
5 | Железобетонные виброгидропрессованные | 1,688 | 4,89 | 1,85 |
6 | Железобетонные центрифугированные | 1,486 | 4,89 | 1,85 |
7 | Стальные и чугунные свнутренним пластмассовым или полимерцементнымпокрытием, нанесенным методом центрифугирования | 1,180 | 4,89 | 1,85 |
8 | Стальные и чугунные с внутреннимцементно-песчаным покрытием, нанесенным методом набрызгас последующим заглаживанием | 1,688 | 4,89 | 1,85 |
9 | Стальные и чугунные свнутренним цементно-песчаным покрытием, нанесенным методом центрифугирования | 1,486 | 4,89 | 1,85 |
10 | Пластмассовые | 1,052 | 4,774 | 1,774 |
11 | Стеклянные | 1,144 | 4,774 | 1,774 |
Приложение 11 Приложение 12 Приложение 13 Приложение 14*
Подбор оптимального диаметра трубопровода
Определение оптимального диаметра трубопровода – это сложная производственная задача, решение которой зависит от совокупности различных взаимосвязанных условий (технико-экономические, характеристики рабочей среды и материала трубопровода, технологические параметры и т.д.). Например, повышение скорости перекачиваемого потока приводит к уменьшению диаметра трубы, обеспечивающей заданный условиями процесса расход носителя, что влечет за собой снижение затрат на материалы, удешевлению монтажа и ремонта магистрали и т.д. С другой стороны, повышение скорости потока приводит к потере напора, что требует дополнительных энергетических и финансовых затрат на перекачку заданного объема носителя.
Значение оптимального диаметра трубопровода рассчитывается по преобразованному уравнению неразрывности потока с учетом заданного расхода носителя:
При гидравлическом расчете расход перекачиваемой жидкости чаще всего задан условиями задачи. Значение скорости потока перекачиваемого носителя определяется, исходя из свойств заданной среды и соответствующих справочных данных (см. таблицу).
Преобразованное уравнение неразрывности потока для расчета рабочего диаметра трубы имеет вид:
h м = ζ v 2 /2g.
- где ζ – коэффициент местного сопротивления, который зависит от конфигурации местного сопротивления и числа Рейнольдса.
При развитом турбулентном режиме ζ = const, что позволяет ввести в расчеты понятие эквивалентной длины местного сопротивления Lэкв. т.е. такой длины прямого трубопровода, для которого ht = hм. В данном случае потери напора в местных сопротивлениях учитываются тем, что к фактической длине трубопровода добавляется сумма их эквивалентных длин
- где Lпр – приведенная длина трубопровода.
Расчет падения напора и гидравлического сопротивления
Полные потери напора жидкости включают в себя потери на преодоление потоком всех препятствий: наличие насосов, дюкеров, вентилей, колен, отводов, перепадов уровня при течении потока по трубопроводу, расположенному под углом и т.д. Учитываются потери на местные сопротивления, обусловленные свойствами используемых материалов.
Другим важным фактором, влияющим на потери напора, является трение движущегося потока о стенки трубопровода, которое характеризуется коэффициентом гидравлического сопротивления.
Значение коэффициента гидравлического сопротивления λзависит от режима движения потока и шероховатости материала стенок трубопровода. Под шероховатостью понимают дефекты и неровности внутренней поверхности трубы. Она может быть абсолютной и относительной. Шероховатость различна по форме и неравномерна по площади поверхности трубы. Поэтому в расчетах используется понятие усредненной шероховатости с поправочным коэффициентом (k1). Данная характеристика для конкретного трубопровода зависит от материала, продолжительности его эксплуатации, наличия различных коррозионных дефектов и других причин. Рассмотренные выше величины являются справочными.
Количественная связь между коэффициентом трения, числом Рейнольдса и шероховатостью определяется диаграммой Муди.
Для вычисления коэффициента трения турбулентного движения потока также используется уравнение Коулбрука-Уайта, с использованием которого возможно наглядное построение графических зависимостей, по которым определяется коэффициент трения:
В расчётах используются и другие уравнения приблизительного расчета потерь напора на трение. Одним из наиболее удобных и часто используемых в этом случае считается формула Дарси-Вейсбаха. Потери напора на трение рассматриваются как функция скорости жидкости от сопротивления трубы движению жидкости, выражаемой через значение шероховатости поверхности стенок трубы:
Потери давления по причине трения для воды рассчитывают по формуле Хазена — Вильямса:
Краткая теория.
В упомянутой выше статье теория вкратце рассматривалась. Освежим в памяти основные моменты.
Движение жидкостей по трубам и каналам сопровождается потерей давления, которая складывается из потерь на трение по длине трубопровода и потерь в местных сопротивлениях – в изгибах, отводах, сужениях, тройниках, запорной арматуре и других элементах.
В гидравлике в общем случае потери давления вычисляются по формуле Вейсбаха:
∆Р=ζ·ρ·w²/2, Па, где:
- ζ – безразмерный коэффициент местного сопротивления;
- ρ – объёмная плотность жидкости, кг/м 3 ;
- w – скорость потока жидкости, м/с.
Расчет потерь давления
Рабочее давление в трубопроводе – это на большее избыточное давление, при котором обеспечивается заданный режим технологического процесса. Минимальное и максимальное значения давления, а также физико-химические свойства рабочей среды, являются определяющими параметрами при расчёте расстояния между насосами, перекачивающими носитель, и производственной мощности.
Расчет потерь на падение давления в трубопроводе осуществляют по уравнению:
ПлотностьСвойства полиэтилена во многом определяются его плотностью. В российских и международных стандартах принята следующая классификация полиэтилена по группам плоности, г/см3:
Внешне трубы из ПНД и ПВД ничем не отличаются, поэтому при отсутствии маркировки или паспорта на трубы отличить их довольно трудно. Если имеются два отрезка трубы из ПНД и ПВП одного наружного диаметра с одинаковой толщиной стенки, то трубы из ПНД при приложении равных нагрузок сплющиваются в меньшей степени. Трубы из ПНД более твердые, чем трубы из ПВД, поэтому на поверхности трубы из ПНД при проведении по ней ногтем обычно остается малозаметная царапина, тогда как на поверхности трубы из ПВД она более заметна. При ударе о твердую поверхность детали из ПВД издают глухой звук, а детали из ПНД — звонкий или слегка звонкий звук. Климатическое старениеПолиэтилен чувствителен к ультрафиолетовым лучам и теплу. Под их воздействием изменяются его цвет и механические характеристики, т.е. он становится более твердым и хрупким. Эти изменения происходят не сразу и становятся заметными только после года хранения труб на открытом воздухе, на солнце и в неблагоприятных климатических условиях. Влияние температурных воздействийПри температурном воздействии полиэтилен становится более «эластичным», т.е. более легко поддающимся деформированию при механических усилиях. Обычно полиэтиленовые трубы рассчитываются исходя из прочности материала при температуре 200С. Если температура ниже этого значения, то прочность материала повышается.
Сопротивление растяжению Значение предела текучести является довольно важным, т.к. оно указывает на тот предел, по достижении которого пластическая масса испытывает необратимые изменения, при этом относительное удлинение составляет 16%. Сопротивление удлинениюУдлинение может колебаться в пределах от 800 до 1000% при скорости от 50 до 100 мм/мин при температуре 200С. Величина удлинения непостоянна и зависит от скорости растягивания и температуры. Продольное расширениеКоэффициент расширения полиэтилена в 10 раз превышает соответствующий коэффициент стали. Коэффициент расширения полиэтилена равен 0,15 — 0,20, тогда как у стали — 0,011 мм/м0С. Это следует учитывать при прокладке трубопроводов из полиэтиленовых труб и соблюдать меры предосторожности. РелаксацияЕсли полиэтилен подвергается постоянной деформации, то с увеличением длительности воздействия напряжение материала уменьшается, т.к. он адаптируется к новому состоянию. Теплоизоляционные свойстваПолиэтилен обладает хорошими теплоизоляционными свойствами. Тем не менее для подземных трубопроводов теплоизоляционные свойства грунта зачастую более значимы, чем теплоизоляционные свойства самой трубы. Коэффициент теплопроводности полиэтилена 0,36-0,43 Вт/м0К. Сопротивляемость химическим воздействиямТрубы из полиэтилена обладают высокой химической стойкостью. Горючесть При контакте с огнем полиэтилен быстро загорается, плавится и стекает каплями. Пламя при горении — синее, слабосветящееся, с запахом затухающей свечи.
|